C1 Hermite interpolation using MPH quartic

نویسندگان

  • Gwang-Il Kim
  • Min-Ho Ahn
چکیده

In this paper, we study the C1 Hermite interpolation problem using Minkowski Pythagorean Hodograph (MPH) quartics in R2,1. As a preliminary step, we characterize MPH curves in R2,1 by the roots of the hodographs of their complexified spine curves. We present two schemes for this interpolation problem: one is a subdivision scheme using direct C1 interpolation and the other is a two step scheme using a new concept, C1/2 interpolation.  2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite interpolation by Pythagorean hodograph curves of degree seven

Polynomial Pythagorean hodograph (PH) curves form a remarkable subclass of polynomial parametric curves; they are distinguished by having a polynomial arc length function and rational offsets (parallel curves). Many related references can be found in the article by Farouki and Neff on C1 Hermite interpolation with PH quintics. We extend the C1 Hermite interpolation scheme by taking additional c...

متن کامل

On Convexity Preserving C1 Hermite Spline Interpolation

The aim of this paper is to present a general approach to the problem of shape preserving interpolation. The problem of convexity preserving interpolation using C Hermite splines with one free generating function is considered.

متن کامل

G1 Hermite interpolation by Minkowski Pythagorean hodograph cubics

As observed by Choi et al. (1999), curves in Minkowski space R2,1 are very well suited to describe the medial axis transform (MAT) of a planar domain, and Minkowski Pythagorean hodograph (MPH) curves correspond to domains, where both the boundaries and their offsets are rational curves (Moon, 1999). Based on these earlier results, we give a thorough discussion of G1 Hermite interpolation by MPH...

متن کامل

Quartic Spline Interpolation

Davis, P. J. Interpolation and approximation, Blaisdell New York 1969 Dikshit,H. P. and Rana, S. S. Cubic Interpolatory splines with non uniform Meshes J. Approx. Theory Vol 45, no4(1985) C. A. Hall and Meyer, W. W. ; Optimal error bounds for cubic spline Interpolation J. Approx. Theory, 58 (1989), 59-67. Kopotun K. A. : Univariate spline equivalence of moduli of smoothness and application . Ma...

متن کامل

Refinable Bivariate Quartic C-splines for Multi-level Data Representation and Surface Display

In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2003